Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-19T04:00:10.060Z Has data issue: false hasContentIssue false

Multidimensional credibility: A new approach based on joint distribution function

Published online by Cambridge University Press:  12 April 2024

Limin Wen
Affiliation:
School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, China
Wei Liu
Affiliation:
School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, China
Yiying Zhang*
Affiliation:
Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China
*
Corresponding author: Yiying Zhang; Email: zhangyy3@sustech.edu.cn

Abstract

In the traditional multidimensional credibility models developed by Jewell ((1973) Operations Research Center, pp. 73–77.), the estimation of the hypothetical mean vector involves complex matrix manipulations, which can be challenging to implement in practice. Additionally, the estimation of hyperparameters becomes even more difficult in high-dimensional risk variable scenarios. To address these issues, this paper proposes a new multidimensional credibility model based on the conditional joint distribution function for predicting future premiums. First, we develop an estimator of the joint distribution function of a vector of claims using linear combinations of indicator functions based on past observations. By minimizing the integral of the expected quadratic distance function between the proposed estimator and the true joint distribution function, we obtain the optimal linear Bayesian estimator of the joint distribution function. Using the plug-in method, we obtain an explicit formula for the multidimensional credibility estimator of the hypothetical mean vector. In contrast to the traditional multidimensional credibility approach, our newly proposed estimator does not involve a matrix as the credibility factor, but rather a scalar. This scalar is composed of both population information and sample information, and it still maintains the essential property of increasingness with respect to the sample size. Furthermore, the new estimator based on the joint distribution function can be naturally extended and applied to estimate the process covariance matrix and risk premiums under various premium principles. We further illustrate the performance of the new estimator by comparing it with the traditional multidimensional credibility model using bivariate exponential-gamma and multivariate normal distributions. Finally, we present two real examples to demonstrate the findings of our study.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauwelinckx, T. and Goovaerts, M.J. (1990) On a multilevel hierarchical credibility algorithm. Insurance: Mathematics and Economics, 9, 221228.Google Scholar
Belitskii, G.R. and Lyubich, Y.I. (2013) Matrix Norms and their Applications, Vol. 36. Birkhäuser.Google Scholar
Bühlmann, H. (1967) Experience rating and credibility. ASTIN Bulletin: The Journal of the IAA, 4, 199207.CrossRefGoogle Scholar
Bühlmann, H. and Gisler, A. (2005) A Course in Credibility Theory and its Applications. Springer Netherlands.Google Scholar
Bühlmann, H., Gisler, A. and Kollöffel, D. (2003). Multidimensional credibility applied to estimating the frequency of big claims. ASTIN Colloquium International Actuarial Association, 125.Google Scholar
Cai, X.Q., Wen, L.M., Wu, X.Y. and Zhou, X. (2015) Credibility estimation of distribution functions with applications to experience rating in general insurance. North American Actuarial Journal, 19, 311335.CrossRefGoogle Scholar
Deresa, N.W., Van Keilegom, I. and Antonio, K. (2022) Copula-based inference for bivariate survival data with left truncation and dependent censoring. Insurance: Mathematics and Economics, 107, 121.Google Scholar
Dhaene, J. and Goovaerts, M.J. (1996). Dependency of risks and stop-loss order. ASTIN Bulletin: The Journal of the IAA, 26, 201212.CrossRefGoogle Scholar
Englund, M., Guillén, M., Gustafsson, J., Nielsen, L.H. and Nielsen, J.P. (2008) Multivariate latent risk: A credibility approach. ASTIN Bulletin: The Journal of the IAA, 38, 137146.CrossRefGoogle Scholar
Englund, M., Gustafsson, J., Nielsen, J.P. and Thuring, F. (2009) Multidimensional credibility with time effects: An application to commercial business lines. Journal of Risk and Insurance, 76, 443453.CrossRefGoogle Scholar
Frees, E.W. (2003). Multivariate credibility for aggregate loss models. North American Actuarial Journal, 7, 1337.CrossRefGoogle Scholar
Gómez-Déniz, E. (2016). Bivariate credibility bonus–malus premiums distinguishing between two types of claims. Insurance: Mathematics and Economics, 70, 117124.Google Scholar
Gómez-Déniz, E. and Calderín-Ojeda, E. (2018) Multivariate credibility in bonus–malus systems distinguishing between different types of claims. Risks, 6, 111.CrossRefGoogle Scholar
Gómez-Déniz, E. and Calderín-Ojeda, E. (2021) A priori ratemaking selection using multivariate regression models allowing different coverages in auto insurance. Risks, 9, 128.CrossRefGoogle Scholar
Guerra, M. and Centeno, M.D.L. (2010) Optimal reinsurance for variance related premium calculation principles1. ASTIN Bulletin: The Journal of the IAA, 40, 97121.CrossRefGoogle Scholar
Hachemeister, C. (1975) Credibility for regression models with application to trend (reprint). In Credibility: Theory and Applications (ed. Kahn, P.), pp. 307–48. New York: Academic Press, Inc.Google Scholar
Jewell, W.S. (1973) Multidimensional credibility. Operations Research Center, pp. 7377.Google Scholar
Jewell, W.S. (1974) Exact multidimensional credibility. Bulletin of Swiss Association of Actuaries, 74, 193214.Google Scholar
Laloë, T. and Servien, R. (2013). Nonparametric estimation of regression level sets using kernel plug-in estimation. Journal of the Korean Statistical Society, 42, 301311.CrossRefGoogle Scholar
Oliveira, M., Crujeiras, R.M. and Rodríguez-Casal, A. (2012) A plug-in rule for bandwidth selection in circular density estimation. Computational Statistics $\&$ Data Analysis, 56, 38983908.Google Scholar
Pechon, F., Denuit, M. and Trufin, J. (2021). Home and motor insurance joined at a household level using multivariate credibility. Annals of Actuarial Science, 15, 82114.CrossRefGoogle Scholar
Poon, J. and Lu, Y. (2015) A spatial cross-sectional credibility model with dependence among risks. North American Actuarial Journal, 19, 289310.CrossRefGoogle Scholar
Robert, C.P., Casella, G. and Casella, G. (1999) Monte Carlo Statistical Methods, Vol. 2. New York: Springer.CrossRefGoogle Scholar
Schinzinger, E., Denuit, M. and Christiansen, M. (2016) A multivariate evolutionary credibility model for mortality improvement rates. Insurance: Mathematics and Economics, 69, 7081.Google Scholar
Thuring, F., Nielsen, J.P., Guillén, M. and Bolancé, C. (2012) Selecting prospects for cross-selling financial products using multivariate credibility. Expert Systems with Applications, 39, 88098816.CrossRefGoogle Scholar
Wen, L.M., Wu, X.Y. and Zhou, X. (2009) The credibility premiums for models with dependence induced by common effects. Insurance: Mathematics and Economics, 44, 1925.Google Scholar
Wolny-Dominiak, A. and Trzesiok, M. (2022) Package ‘insuranceData’.Google Scholar
Wu, B., Yao, Q. and Zhu, S. (2013) Estimation in the presence of many nuisance parameters: Composite likelihood and plug-in likelihood. Stochastic Processes and their Applications, 123, 28772898.CrossRefGoogle Scholar
Yan, Y.J. and Song, K.-S. (2022) A general optimal approach to Bühlmann credibility theory. Insurance: Mathematics and Economics, 104, 262282.Google Scholar
Yeo, K.L. and Valdez, E.A. (2006) Claim dependence with common effects in credibility models. Insurance: Mathematics and Economics, 38, 609629.Google Scholar
Supplementary material: File

Wen et al. supplementary material 1

Wen et al. supplementary material
Download Wen et al. supplementary material 1(File)
File 5.5 MB
Supplementary material: File

Wen et al. supplementary material 2

Wen et al. supplementary material
Download Wen et al. supplementary material 2(File)
File 278.4 KB
Supplementary material: File

Wen et al. supplementary material 3

Wen et al. supplementary material
Download Wen et al. supplementary material 3(File)
File 6.6 KB