Cambridge Catalogue  
  • Help
Home > Catalogue > Polymer Dynamics and Relaxation
Polymer Dynamics and Relaxation

Details

  • Page extent: 266 pages
  • Size: 247 x 174 mm
  • Weight: 0.63 kg

Library of Congress

  • Dewey number: 547.7
  • Dewey version: 22
  • LC Classification: QD381 .B69 2007
  • LC Subject headings:
    • Polymers
    • Polymers--Structure
    • Molecular dynamics

Library of Congress Record

Hardback

 (ISBN-13: 9780521814195)




Contents




  Preface page ix
  Part I   Methodology 1
1   Mechanical relaxation 3
  1.1  Regimes of behavior 3
  1.2  Superposition principle 5
  1.3  Relaxation modulus 5
  1.4  Simple stress relaxation 6
  1.5  Dynamic modulus 7
  1.6  Interconversion of stress relaxation and dynamic modulus 9
  1.7  Representation of the relaxation function: single relaxation time (SRT) 11
  1.8  Relaxations in polymeric materials tend to be “broad” 13
  1.9  Distribution of relaxation times 14
  1.10  Relaxation spectrum from ER(t) 15
  1.11  Creep compliance 18
  1.12  Dynamic compliance 19
  1.13  Representation of the retardation function 21
  1.14  Summary of the data transformations illustrated 22
  Appendix A1   A brief summary of elasticity 23
  References 26
2   Dielectric relaxation 27
  2.1  Dielectric permittivity 27
  2.2  Measurement of dielectric permittivity 30
  2.3  Time dependence of polarization: reorientation of permanent dipoles 31
  2.4  Polarization and permittivity in time dependent electric fields 33
  2.5  Empirical representations of the dielectric permittivity 35
  References 43
3   NMR spectroscopy 44
  3.1  NMR basics 45
  3.2  The pulsed NMR method 47
  3.3  NMR relaxation measurements 49
  3.4  NMR exchange spectroscopy 54
  References 56
4   Dynamic neutron scattering 57
  4.1  Neutron scattering basics 57
  4.2  Time-of-flight (TOF) and backscattering QENS 63
  4.3  Neutron spin echo (NSE) spectroscopy 66
  References 69
5   Molecular dynamics (MD) simulations of amorphous polymers 70
  5.1  A brief history of atomistic MD simulations of amorphous polymers 70
  5.2  The mechanics of MD simulations 71
  5.3  Studying relaxation processes using atomistic MD simulations 75
  5.4  Classical atomistic force fields 76
  References 79
  Part II  Amorphous polymers 81
6   The primary transition region 83
  6.1  Mechanical relaxation 83
  6.2  Dielectric relaxation 90
  6.3  Mechanical vs. dielectric relaxation 96
  6.4  NMR relaxation 104
  6.5  Neutron scattering 110
  References 118
7   Secondary (subglass) relaxations 120
  7.1  Occurrence of mechanical and dielectric secondary processes 120
  7.2  Complexity and multiplicity of secondary processes 121
  7.3  Flexible side group motion as a source of secondary relaxation 129
  7.4  NMR spectroscopy studies of flexible side group motion 138
  References 140
8   The transition from melt to glass and its molecular basis 142
  8.1  Experimental description 142
  8.2  Molecular basis 157
  References 194
  Part III  Complex systems 197
9   Semi-crystalline polymers 199
  9.1  Phase assignment 200
  9.2  Effect of crystal phase presence on amorphous fraction relaxation 209
  9.3  Relaxations in semi-crystalline polymers with a crystal phase relaxation 214
  9.4  NMR insights 223
  References 226
10   Miscible polymer blends 227
  10.1  Poly(isoprene)/poly(vinyl ethylene) (PI/PVE) blends 228
  10.2  Models for miscible blend dynamics 229
  10.3  MD simulations of model miscible blends 233
  10.4  PI/PVE blends revisited 239
  References 243
  Appendix AI The Rouse model 244
AI.1   Formulation and normal modes 244
AI.2   Establishment of Rouse parameters for a real polymer 245
AI.3   The viscoelastic response of a Rouse chain 245
AI.4   Bead displacements and the coherent single-chain structure factor 246
  References 247
  Appendix AII Site models for localized relaxation 248
AII.1   Dipolar relaxation in terms of site models 248
AII.2   Mechanical relaxation in terms of site models 251
  References 252
  Index 253


printer iconPrinter friendly version AddThis