Cambridge Catalogue  
  • Help
Home > Catalogue > Polymer Dynamics and Relaxation
Polymer Dynamics and Relaxation

Details

  • Page extent: 266 pages
  • Size: 247 x 174 mm
  • Weight: 0.63 kg

Library of Congress

  • Dewey number: 547.7
  • Dewey version: 22
  • LC Classification: QD381 .B69 2007
  • LC Subject headings:
    • Polymers
    • Polymers--Structure
    • Molecular dynamics

Library of Congress Record

Hardback

 (ISBN-13: 9780521814195)




Index




anelastic regime, 3

Argand plot, 38

Arrhenius temperature dependence, 88,89,107,109,152,154,238

atomistic potentials (force fields), 76–79,106,107

   form, 77–78

   sources, 78–79

backscattering spectrometer, 64

bifurcation of the primary and secondary processes, molecular dynamics (MD) simulations, 182–194

chemical shift anisotropy, 46,54

Cole–Cole function, 37,87

Cole–Cole plot, 39

   compliance

   creep, 18

   dynamic, 19

concentration-fluctuation models, 232–233,242,243

conformation transitions, correlation of, 162

conformational energetics and barriers, 76,92,113,183,184

conformational memory

conformational transitions

   and relaxation, 121,161

   and transition rate, 107,108,113,171–174,187–188

   heterogeneity and homogenization, 172–174

   modeling, 171–172

Davidson–Cole function, 39,87

dielectric constant, 30,92

dielectric modulus, 97

dielectric permittivity, 27,30,97

dielectric relaxation, 27

dielectrics, 27

dipolar coupling, 46,54

dipole moment autocorrelation function (DACF), 184,185

dynamic heterogeneity and conformational phenomena, 157–182

dynamic neutron scattering, 57,110

elastic regime, 3

elasticity, summary, 23

Fox equation, 230

free induction decay (FID), 49

Fuoss–Kirkwood function, 41

Gaussian approximation, 112,118

Havriliak–Negami (HN) function, 39,87,90,96,240

impedance, dielectric, 34

intermediate dynamic structure factor, 61–62,67,114,115,154

internal viscosity model (IVM), 117,118

inversion recovery method, 51

ionic conduction, 97

isotopic substitution, 62–63

Kirkwood–Onsager equation, 242

Kramers–Kroenig relation, 11

KWW function, 36,105,115,151,154,184,188,235

LB-PBD

   autocorrelation functions, 184

   conformational motion, 187–188

   relationship between the - and -relaxation processes, 193–194

   strength of the -relaxation process, 189–193

   temperature dependence of relaxation times, 184–187

   width of the -relaxation process, 188–189

Lodge–McLeish (LM) model, 229–232,238

loss (relaxation) maps, 91

low barrier poly(butadiene) (LB-PBD), 182–194

mean-square atomic displacement, 112,113–114,n:93

mechanical relaxation, 3,83

   isochronal scans, 83

mechanical vs. dielectric relaxation, 96–104

merging of primary and secondary dielectric relaxations, 142

miscible polymer blends, 227

   models, 229

   molecular dynamics (MD) simulations, 233–239

mode coupling theory

modulus

   dynamic, 7

   relaxation, 5

molecular dynamics (MD) simulations, 70

   advanced methods, 73–75

   ensembles, 71–72

   history of polymer simulations, 71

   limitations, 72–73

   mechanics, 71–72

   relaxation processes and, 75–76

   time correlation functions, 75

neutron scattering basics, 57

neutron spin echo (NSE) spectroscopy, 66–68,115,151

NMR 2D exchange spectra

   measurements, 54–55,138,156,228,229,241,242

   modeling, 55–56

NMR 4D exchange spectroscopy, 156

NMR basics, 45

NMR pulses, 47,51,54

NMR spin-lattice relaxation

   13C, 50,230

   2H, 51,230

NMR spin-lattice relaxation time, 49,104,109,110

NMR spin-spin relaxation time, 49–51

non-Gaussian displacements, 114,118

nuclear magnetic resonance (NMR), 44

nuclear Overhauser effect (NOE), 51–53,104,109,110

orientational autocorrelation function (P2(t)), 51,104,105,109

overlap and coalescence of primary and secondary dielectric relaxations, 142–149

PBD/LB-PBD blends, 233

   application of the Lodge–McLeish model, 238–239

   composition dependence of dielectric relaxation, 235–236

   temperature dependence of dielectric relaxation, 236–238

PEMA poly(ethyl methacrylate), 139

PEN poly(ethylene 2,6-naphthalene dicarboxylate) subglass relaxations, 125

PiBMA poly(isobutyl methacrylate), 139

PMA poly(methyl acrylate) subglass relaxation, 130

PMMA poly(methyl methacrylate), 139

polarization, dielectric, 28,31,33

poly(butadiene) (PBD)

   conformational transitions, 107

   dielectric relaxation, 152

   molecular dynamics (MD) simulations, 53,107,115,152–155,182

   NMR, 53

   NMR T1 values, 53

   NSE, 114–115,151,154

   orientational autocorrelation function (P2(t)), 107

poly(ethylene)

   amorphous, as a model system, 157

   conformational energetics, 113

   conformational transitions, 113–114

   librational motion, 113–114

   molecular dynamics (MD) simulations, 64,109,182

   NMR T1 values, 109,110

   NOE, 109,110

   QENS, 64–66,111–114

poly(ethylene terephthalate) (PET)

   dielectric relaxation, 97,120,121

poly(isobutylene) (PIB)

   dielectric relaxation, 68

   NSE, 68

poly(isoprene) (PI), blends, 230

poly(isoprene)/poly(vinyl ethylene) (PI/PVE) blends, 228–229,232,239–243

   dielectric loss, 228,232,239–243

   NMR 2D exchange, 228,229,241,242

poly(n-octyl methacrylate), dynamic compliance, 83

polystyrene (PS)

   blends, 230

   molecular dynamics (MD) simulations, 105

   NMR 2D exchange, 56,107,156

   NMR T1 values, 105,106

poly(vinyl methyl ether) (PVME), dielectric relaxation, 90,96,130

poly(vinyl methyl ether)/polystyrene (PVME/PS) blends, 231

primary and secondary merged relaxations at high temperature, 149

primary transition region, 83

PVAc poly(vinyl acetate) dielectric relaxation, 36,n:130

PVC poly(vinyl chloride) subglass relaxation, 128

quasielastic dynamic structure factor, 60–61,151

quasielastic neutron scattering (QENS), 60,64,111

relaxation time

   dielectric, 35

   distribution, 14,85

   mechanical, 11

   temperature dependence of, 87–89

relaxation time spectrum, dielectric, 42

relaxed compliance, 99,103

relaxed dielectric constant, 103

relaxed modulus, Er, 6,99,103

retardation time

   mechanical, 21

   distribution of, 85

Reuss lower bound equation, 201

Rouse model and normal modes, 109,111,116–118,244–247

Rouse–Zimm theory, 99

secondary mechanical and dielectric relaxations, summary of characteristics, 138

secondary relaxations

   complexity and multiplicity, 121–129

   flexible side group motion, molecular modeling of strengths, 130–134

   NMR spectroscopy studies of flexible side group motion, 138–139

   of side groups, modeling of dynamics, 134–138

secondary (subglass) relaxations (processes), occurrence, 120

self-concentration, 230,231,238,239

semi-crystalline polymers

   crystal -process and mechanical relaxation, 222

   crystal -process diffusive nature of chain transport, 223

   dielectric and NMR relaxation in polyethlylene (PE), 216–221

   effect of crystal phase on amorphous fraction dielectric relaxation, 209–213

   effect of crystal phase on amorphous fraction mechanical relaxation, 213

   lamellar bounds on mechanical moduli, 205

   mechanical relaxation in polyethylene (PE), 214–216

   phase assignment of dielectric relaxation, 207

   phase assignment of mechanical relaxation, 200–206

   phenomenological mechanical data analysis, 203–206

   relaxations in the crystal phase, 214–226

semi-flexible chain model (SFCM), 116–117,118

shift factors, temperature dependence of, 87–89

site models

   dipolar relaxation strength, 249

   for localized relaxation, 248–252

   mechanical relaxation, 251–252

   three-site relaxation, 250

   two-site dipolar relaxation, 248–249

strength, relaxation, 12

stress relaxation, 6

superposition principle, 5

time-of-flight (TOF) spectrometer, 63

time–temperature superposition, 84–87,153,154

torsional autocorrelation function (TACF), 76,107,184,190–193

Tsai–Halpin equation, 201

unrelaxed compliance, 99,103

unrelaxed dielectric constant, 103

unrelaxed modulus, Eu, 11,99,103

viscoelastic regime, 3

Vogel–Fulcher (VF) equation and temperature dependence, 89,105,107,108,151,154,184,230

Voigt upper bound equation, 201

Williams–Landel–Ferry (WLF) equation and temperature dependence, 101

Polymer Dynamics and Relaxation Boyd and Smith Table of Contents
printer iconPrinter friendly version AddThis